Problem 1.26

A cell phone battery is rated at 3.85 V and can store 10.78 watt-hours of energy.
(a) How much average current can it deliver over a period of 3 hours if it is fully discharged at the end of that time?
(b) How much average power is delivered in part (a)?
(c) What is the ampere-hour rating of the battery?

Solution

Determine the average power supplied by the battery

$$
p=10.78 \mathrm{~Wh} \times \frac{1}{3 \mathrm{~h}}=\frac{539}{150} \mathrm{~W} \approx 3.593 \mathrm{~W}
$$

and then use the basic definition of power to obtain the average current.

$$
p=v i \quad \rightarrow \quad i=\frac{p}{v}=\frac{\frac{539}{150} \mathrm{~W}}{3.85 \mathrm{~V}} \approx 0.933 \mathrm{~A}
$$

Divide the number of watt-hours by the voltage to get the ampere-hour rating of the battery.

$$
\frac{10.78 \text { watt-hours }}{3.85 \mathrm{~V}}=2.80 \text { ampere-hours }
$$

